|
有望超越Pt的ORR催化剂:原子级掺杂金属元素的氮碳材料2020-08-30 20:54来源:纳微快报 nanomicroletters作者:孙晓明网址:https://mp.weixin.qq.com/s/cxEsXdnaDJ8DxZr7pC2NMQ浏览数:1061次
研究背景 近年来,非贵金属基MNC催化剂在电催化领域取得了长足进步,其中原子级分散的铁或钴掺杂的氮碳材料表现出超越贵金属Pt催化剂的氧气还原反应(ORR)性能。研究者为进一步提升金属氮碳材料的ORR性能,提出使用非金属元素对于金属氮物种(M-Nx,x=2-5)实施近邻掺杂的策略。然而,如何通过分子级反应设计,在M-Nx物种实现原位可控掺入杂元素,仍具较大挑战。 Atomically Dispersed FeN4 Yin Jia, Xuya Xiong, Danni Wang, Xinxuan Duan, Kai Sun, Yajie Li, Lirong Zheng, Wenfeng Lin, Mingdong Dong, Guoxin Zhang*, Wen Liu*, Xiaoming Sun* Yin Jia and Xuya Xiong have contributed equally to this work. NanoMicro Lett.(2020) 12:116 https://doi.org/10.1007/s40820-020-00456-8 本文亮点 1. 内容简介 为促进Fe-NC的ORR性能,往往需要对原子级分散的Fe-NC做进一步的修饰和调节,目前有效策略可大致分为四类:(1)增大Fe载量;(2)增大比表面积,暴露更多的活性位点;(3)通过引入辅助组分如FeCo合金、Fe3C;(4)杂原子局域掺杂。其中,由于杂元素与Fe-N4物种间可实现更为高效的协同效应,因此该策略被认为是调控Fe-N4位点本征活性的重要途径。以硫元素为例,硫原子相对氮原子具有较大的原子半径和较小的电负性,易打破芳香碳环的对称性,调节Fe-N4位点的局部电子结构。通常,可以通过在前驱物中引入硫掺杂,例如,使用含硫有机小分子、含硫聚合物或者含硫的金属盐类,不同种类的前驱物可实现不同程度及构型的硫掺杂。然而,如何通过分子级反应设计,精准实现Fe-N4的近邻S元素掺杂,仍具较大挑战。 北京化工大学孙晓明教授团队基于甲酰胺液相合成体系,利用其在对于MNC材料制备过程中对于金属组分和非金属组分的兼容性,在前体合成过程中引入硫脲参与聚合反应,在分子尺度设计并确认S的掺杂位置,进而在Fe-N4物种近邻的固定位置实现S元素掺杂。研究团队结合电镜技术和同步辐射技术对其结构进行解析确认,发现其原子结构为Fe(N3)(N-C-S)构型。经过电化学测试,该硫掺杂的Fe-NC材料表现出优异的氧气还原催化活性和稳定性,有望在金属空气电池、燃料电池等领域实现应用。 图文导读 I Fe-NSC的合成示意图如图1a所示,小分子甲酰胺和硫脲分别作为碳/氮源和硫源,首先经过溶剂热的方法,甲酰胺发生Mannich反应聚合形成齿状的聚合物配体,并螯合金属离子Zn2+和Fe3+,同时,硫脲分子通过与甲酰胺聚合,最终形成Fe-N4-C-S的复合结构。经过第二步在N2氛围下的高温(900℃)碳化过程,将Zn2+还原为金属锌,并挥发(金属锌的沸点为907℃),同时不稳定的有机官能团亦挥发,使其达到较高的碳化程度。最终得到金属原子单分散的由N原子配位稳定的Fe-NSC材料,其电荷密度主要由N原子调节,其次由周围的S原子调节。Fe-NSC的形貌采用透射电镜(TEM)和高角度环形暗场扫描透射电镜(HAADF-STEM)进行研究。如图1b所示,高温碳化后,没有观察到金属Fe颗粒,说明金属在结构中以金属团簇或单原子形式存在。同时,元素分布图说明Fe,N和S元素均匀分布于碳基底(图1c)。HAADF-STEM图(图1d)中标记红圈内的亮点,进一步说明Fe组分在N,S共掺杂的碳材料中以单原子形式存在,这主要归因于Zn的隔离效应,同时也与周围N稳定配位有关。利用XRD技术对Fe-NSC和Fe-NC材料进行进一步的结构表征。如图1e所示,Fe-NSC和Fe-NC的XRD图像显示,在26.2°和46.3°处出现两个分别对应石墨碳(002)和(100)晶面的特征峰,而且并没有出现铁基化合物的特征峰,表明金属Fe处于单分散状态,这与HRTEM和HAADF-STEM结果一致。 图1. 采用X射线光电子能谱(XPS)分析了Fe-NSC和Fe-NC的成分组成。如图2a所示,Fe-NSC的构成元素为C、N、O、Fe和S,所占元素百分比分别为77.71,7.36,11.99,0.86和2.07 at%。Fe-NC的主要构成元素为C、N、O、Fe,原子百分比分别为85.80,5.29,8.31和0.60 %。对比可见,Fe-NSC中明显的S掺杂。进而对N1s、Fe2p和S2p谱进行了详细的分析。如图2b所示,N1s图谱可见,由于S的引入,Fe-NSC中N的吡啶构型(398.5 eV)含量要明显多于吡咯氮构型(399.5 eV),说明有S存在时,更倾向于六元环吡啶N的形成,用于锚定金属。由于Fe的含量有限,Fe-NSC和Fe-NC的Fe2p光谱的强度相对于C和N元素要小得多,Fe2p峰的位置均为709~714 eV左右,说明Fe在结构中以氧化态形式存在,即Fe均处于原子单分散状态。值得注意的是,Fe-NSC的谱带中心出现约0.5 eV的蓝移,这意味着Fe-NSC中的Fe原子处于更还原的状态,这可能与S原子的掺杂相关。S2p图谱可见,Fe-NSC中主要有两个分别位于~164.0和~165.1 eV的特征峰,分别对应S2p3/2和S2p1/2的C-S-C结构,同时在~168.5 eV出现一个较弱的峰,对应-C-SOx-C结构,这可能与S位点吸附氧有关。 图2. Fe-NSC和Fe-NC的XPS分析:(a)元素含量,(b)N 1s,(c)Fe2p和(d)S2p谱的精细结构分析。 通过对Fe-NSC和Fe-NC材料的扩展X射线吸收精细结构(EXAFS)测试分析,进一步了解材料的精细结构。如图3a,N的K-edge XANES图显示,~398,~400.1和401.6 eV的特征峰分别对应吡啶氮,吡咯氮和石墨氮,而且六元环的吡啶氮较吡咯氮更明显,~407.4 eV的特征峰对应C-N-C或C-N键,以上结果与XPS结果一致。S的K-edge XANES图(图3b)中显示,在2474.2和2482.6 eV处出现了两个典型的峰,分别对应C-S-C和C-SOx-C结构,证实了Fe-NSC中S元素的成功掺杂。Fe的K-edge XANES图中可见,Fe-NSC的边前峰处于对比样Fe箔和Fe2O3之间,说明Fe在Fe-NSC中处于氧化态,介于0价和3价之间,如图3c所示。图3d为傅里叶变换后R空间图,从图中可以看出,Fe-NSC的主峰位于1.45 Å,而且在2.09 Å处并没有出现Fe-Fe键对应的峰,说明材料中Fe主要以Fe-N的形式存在。通过EXAFS拟合进一步分析其详细结构,如图3e所示,拟合结果表明,每个Fe原子平均由4个N原子配合,同时结合S的K-edge XANES图,推断材料的结构如3e中插图所示(S-C-N-Fe)。采用密度泛函理论(DFT)研究了掺杂S元素在ORR催化过程中对Fe-N4位点的促进作用。首先,搭建在N/S共掺杂碳基底中嵌入Fe-N4位点的模型,模拟Fe-NSC中近邻S元素对Fe-N4活性位点的电荷分布和态密度的影响,如图3f/g所示。与Fe-NC相比,Fe-NSC的电荷分布在Fe原子中心周围呈现出较强的电子聚集(红色区域),这是由近邻的给电子S元素所调控,导致Fe中心电子密度增加。而且在ORR催化过程中,电荷密度的增加,有助于加速电荷的转移。Fe-NSC和Fe-NC中Fe原子的态密度图(图3h)表明,Fe-NSC结构中Fe的d带的带隙比Fe-NC的要窄得多,这意味着Fe-NC中S的掺杂有助于提高导电性。此外,Fe-NSC中Fe的d带中心更接近费米能级,说明更易与反应物O2结合,并促进电子转移。 图3. (a)Fe-NSC和Fe-NC的NK-edge XANES图,(b)S K-edge XANES图,(c)Fe-NSC和标样的Fe K-edge图,(d)傅里叶变换R空间的EXAFS图,(e)Fe K-edge R空间的EXAFS拟合图(f)Fe-NC电荷密度俯视图,(g)Fe-NSC电荷密度俯视图,(h)Fe-NSC和Fe-NC中Fe的d能带态密度图(DOS)。II 图4. Fe-NSC、Fe-NC和Pt/C的电化学性能:(a)CV图:扫描速率为100mV/s,(b)0.1MKOH电解液中的LSV图,(c)0.1M HClO4电解液中的LSV图,(d)稳定性测试。 III 图5. (a-c)不同S位置掺杂的Fe-NSC原子结构俯视图,(d)不同局部位置S掺杂的Fe-NSC和Fe-NC的态密度(PDOS)图,(e)DFT计算得到Fe-NSC和Fe-NC的ORR自由能图。
|